Millimeter Wave Spectroscopy of Ne-CO

D. A. Roth^a, I. Pak^{a,b}, L. A. Surin^{a,b}, B. S. Dumesh^b, and G. Winnewisser^a

^a I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
^b Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia

Z. Naturforsch. **55 a,** 754–758 (2000); received June 10, 2000

Reprint requests to Prof. G. W.; E-mail: winnewisser@ph1.uni-koeln.de

The pure rotational b-type spectrum of the van der Waals complex Ne-CO has been measured using a pulsed jet, intracavity millimeter wave spectrometer. The millimeter wave generation is based on the OROTRON principle. The high sensitivity of the spectrometer allowed measurements of R(J), $K=1 \leftarrow 0$ transitions between 108 and 150 GHz of the Ne isotopomers 20 Ne-CO and 22 Ne-CO. This new millimeter wave data set together with the microwave data in the literature, i.e. a-type microwave transitions, yield in a fit to an asymmetric rotor a reliable set of ground state constants. These are for 20 Ne-CO: A=107127.021(14) MHz, B=3479.6597(95) MHz, and C=3039.5387(93) MHz. For both 20 Ne-CO and 22 Ne-CO, a global fit to a near-symmetric rotor was performed, taking into account the infrared and microwave transition frequencies from the literature and the millimeter wave measurements of the present work.

Key words: Van der Waals Complexes; Spectroscopy; Ne-Co; OROTRON.